CaraMenentukan Titik Koordinat PPDB Dengan Mudah tahun 2021 Jarak Dua Titik pada Bidang Kartesius Aplikasi Menghitung Jarak Koordinat Antara 2 Titik Kalkulasi Koordinat GPS Berdasar Data Heading & Jarak Gambarlah koordinat titik A (1,-2), B (8,-2), C (1,2), D (8,2). Tentukan luas bangun tersebut - Brainly.co.id
MenghitungVolume Benda Pejal tujuan pembelajaran outcome pembelajaran, menghitung massa jenis atau kerapatan suatu zat, menghitung volume benda putar dengan integral madematika, 6 cara untuk menghitung volume wikihow, cara menghitung luas volume dan keliling balok, titik berat benda fisika study center, cara menghitung volume silinder tabung ukuran dan satuan, momen
Ukurannyatidak terlalu besar, hanya 2 MB saja. Jadi tidak akan terlalu memenuhi memori internal ponsel Android anda. Dengan adanya aplikasi pencari titik koordinat ini, anda bisa menemukan pengemudi ojek daring gojek dengan lebih cepat. Baca juga: 6 Aplikasi Penguat GPS Terbaik untuk Gojek/Grab 2022. 3. Driver XGPS.
CaraCepat: Selain menggunakan teorema Pytagoras, soal di atas bisa menggunakan rumus diagonal ruang kubus. Jika sebuah kubus memiliki rusuk r, maka diagonal ruangnya dapat dirumuskan: d = rβ3. Jarak titik D ke titik F merupakan panjang diagonal ruang kubus. Jika panjang rusuk 9 cm, maka: d = rβ3. d = 9β3 cm.
Titikperpotongan garis fidusial inilah yang menjadi dasar sistem koordinat atau disebut pusat kolimasi. Tanda fiducial, titik dasar (principle point) dan. sumbu koordinat foto udara tunggal. Pada foto udara yang benar-benar vertikal, ketiga titik pusat yaitu titik prinsipal, titik nadir dan titik isosenter berimpit menjadi satu titik.
2 Menentukan koordinat awal (Ο, Ξ», h) 3. Menentukan azimuth dari titik datum ke titik jaringan geodetic lainnya, 4. Mengukur jarak dari titik datum ke titik jaringan geodetic lainnya itu, Terestrial Reference System (TRS) didefinisikan sebagai tri-dimensi kerangka acuan dan ikut berputar dengan bumi.
Selanjutnyamasukan titik koordinat di pencarian google maps. Contoh gambarnya seperti dibawah ini. Lintang/Latitude : 5.038770 Bujur/Longitude : 97.324160; Setelah itu tekan cari. Contoh gambar dibawah ini. Setelah dapat. Tinggal tekan arahkan ke lokasi titik koordinat. Dan ikuti arah yang di tunjukan oleh google Maps, Selesai.
OTp8z. Semua benda yang ada di permukaan bumi dipengaruhi oleh percepatan yang mengarah ke pusat bumi yang disebut gravitasi disimbolkan g. Percepatan inilah yang menyebabkan benda bermassa mengalami gaya berat yang arahnya ke pusat bumi. Gaya Berat W = m x g Sebuah benda dapat sobat anggap tersusun atas partikel-partikel berukuran kecil yang mempunyai berat. Resultan dari berat partikel-partikel kecil itu membentuk resultan gaya berat yang mempunyai titik tangkap. Titik tangkap dari resultan gaya tersebut disebut titik berat benda. Dengan demikian dapat didefinisikan bahwa titik berat suatu benda merupakan titik tangkap resultan semua gaya berat yang bekerja pada setiap partikel penyusun benda tersebut. Bagaimana Menetukan Titik Berat Suatu Benda? Coba sobat perhatikakan gambar di bawah di atas. Misalkan ada sebuah benda tegar yang sobat bagi-bagi menjadi beberapa bagian-bagian yang lebih kecil. Bagian-bagian tersebut kemudian kita sebut dengan partikel. Jika kita namakan partikel tersebut partikel 1,2,3,β¦, n dan masing-masing memiliki berat W1, W2, W3, β¦, Wn dan masing-masing memiliki titik tangkap gaya berat di x1,y1,x2,y2,x3,y3,β¦.,xn,yn. Setiap partikel akan menghasilkan suatu momen gaya terhadap titik asal koordinat yang besarnya sama dengan perkalian gaya berat massa x g dikali dengan lengan momennya x. 1 = W1 . x1 2 = W2 . x2 3 = W3 . x3 n = Wn . xn Sekarang kita akan coba menentukan koordinat gaya berat W yang akan menghasilkan efek yang sama dengan semua pada semua partikel-partikel yang menyusunnya. Dari momen gaya total yang dihasilkan oleh W yang bekerja pada titik berat misal xo dirumuskan o = W. xo = W1 . x1 + W2 . x2 + W3 . x3 + β¦ + Wn . xn karena W = W1+ W2+ W3+ β¦ + Wn maka didapat rumus titik berat benda seandainya benda dan sumbu-sumbu pembandinganya sumbu x dan sumbu y diputar 90 derajat maka gaya gravitasi akan berputar 90 derajat pula. Tidak ada perubahan sedikitpun pada berat total benda. Tetapi besarnya momen gaya dari tiap partikel akan berubah karena lengan momennya bukan lagi jark x dari titik pusat melainkn jarak y dari titik pusat. Jika titik berat benda pada sumbu y adalah yo maka cara menentukan posisi yo bisa menggunakan rumus Dari kedua rumus di atas, sobat bisa perhatikan kalau dari rumus W = sehingga W1 = W2 = dan seterusnya dengan demikian variable g dapat kita coret sehingga kita bisa mencari titik berat benda dari massa partikel dengan menggunakan rumus Keterangan Rumus xo = absis x dari titik berat benda yo = ordinat y dari titik berat benda mi = massa partikel ke-i xi = absis titik tangkap dari partikel ke-i yi = ordinat titik tangkap dari partikel ke-i Titik Berat Benda Homogen Berdimensi Tiga Ada hubungan antar massa dan volume m = ΟV dengan Ο adalah massa jenis benda. Dengan demikian untuk setiap partikel m1 = Ο1 . v1, m2 = Ο2 . v2, dan seterusnya, sehingga absis dari titik berat benda dapat dihitung dengan rumus karena Ο rho benda sama, maka bisa dicoret, menghasilkan persamaan Untuk memudahkan sobat mencari titik berat dari benda ruang dimensi tiga berikut tabel rumus Titik berat benda pejal homogen berdimensi tiga Silinder Pejal yo = 1/2 t v = 1/2 ΟR2 t t = tinggi silinder R = jari-jari lingkaran alas Prisma Pejal Beraturan Letak titik berat z pada titik tengah garis z1 dan z3 yo = 1/2 l V = luas alas x tinggi z1 = titik berat bidang alas z2 = titip berat bidang atas l = panjang sisi tegak v = volume prisma Limas Pejal Beraturan yo = 1/4 TTβ = 1/4 t V = 1/3 x luas alas x tinggi TTβ = t = tinggi limas beraturan Kerucut Pejal yo = 1/4 t V = 1/3 ΟR2 t t = tinggi kerucut R = jari-jari alas Setengah Bola yo = 3/8 R V = 4/6 ΟR3 R = jari-jari bola Contoh Soal Misal sobat punya sebuah benda pejal yang tersusun dari 2 buah bangun yaitu sebuah balok dan sebuah limas segi empat dengan bentuk seperti gambar di bawah ini Bangun I = kubus homogen dengan rusuk 10 m Bandun II = limas pejal homogen dengan tinggi 8 m dana alas sesuai gambar Pertanyaannya, dimana letak titik berat dari benda pejal tersebut? a. 5,93 m dari alas bawah kubus d. 6 m dari alas bawah kubus b. 5 m dari alas bawah kubus e. 6,47 m dari alas bawah kubus c. 4,5 m dari alas bawah kubus Jawab Kita uraikan masing-masing bangun Bangun I Kubus y1 = 1/2 x panjang rusuk y1 = 1/2 x 10 = 5 m Volume = 10 x 10 x 10 = 1000m3 Bangun II Limas Karena titik berat kita hitung berdasarkan suatu acuan tetap titik 0,0 dan ditanyakan titik berat dari bawah alas kubus maka, y2 = 10 + 1/4 tinggi limas lihat gambar y2 = 10 + . 12 y2 = 12 m Volume = 1/3 x 10 x 10 x 8 = 800/3 = 266,67 m3 Titik berat dari alas bawah kubus yo = + yo = 5000 + 3200/1000+266,67 yo = 8200/1266,67 = 6,47 m Jadi letak titik berat benda adalah 6,47 meter dari alas bawah kubus. Okey sobat, lain kesempatan kita akan bahas juga mengenai titik berat benda untuk benda homogen dua dimensi, benda beruang, dan juga kurva homogen.
Cara mencari titik berat benda 2 dimensi luasan dapat dilakukan melalui tiga langkah. Ketiga langkah pada cara mencari titik berat benda meliputi membagi bangun menjadi beberapa bagian, menentukan luas dan koordinat titik berat masing-masing bangun, serta menghitung letak titik berat benda menggunakan rumus titik berat benda. Pengertian dari titik berat sendiri adalah titik keseimbangan sempurna atau sebuah pusat distribusi berat. Dengan kata lain, titik berat adalah titik dimana seakan akan berat seluruh benda terkosentrasi di satu titik tersebut. Sehingga, jika benda ditopang pada titik beratnya maka benda akan berada dalam keadaan seimbang. Bagaimana cara mencari titik berat benda? Untuk mengetahui bahasan lebih lanjutnya, simak ulasan materi cara mencari titik berat benda dan contoh soal cara mencari titik berat benda beserta pembahasannya yang akan diberikan pada akhir bahasan. Table of Contents Rumus Titik Berat Benda Homogen Contoh Cara Mencari Titik Berat Benda Contoh Soal Titik Berat Benda dan Pembahasan Contoh 1 β Soal dan Cara Mencari Titik Berat Benda Contoh 2 β Soal dan Cara Mencari Titik Berat Benda Contoh 3 β Soal dan Cara Mencari Titik Berat Benda Contoh 4 β Soal dan Cara Mencari Titik Berat Benda Contoh 5 β Soal dan Cara Mencari Titik Berat Benda Rumus Titik Berat Benda Homogen Beberapa benda yang memiliki suatu bentuk bangun-bangun tertentu memiliki titik berat yang sesuai dengan tabel berikut. Rumus titik berat benda pada tabel di atas akan sobat idschool butuhkan pada cara mencari titik berat benda. Selain itu, sobat idsccool juga membutuhkan rumus titik berat benda yang secara umum dapat dinyatakan dalam persamaan di bawah. Rumus di atas digunakan ketika bangun tidak memiliki lubang/celah dalam bangun. Jika bentuk bangun memiliki lubang maka rumus menjadi pengurangan untuk bagian luas yang berlubang. Selanjutnya, penggunaan rumus titik berat bangun luasan di atas dapat dilihat seperti pada cara penyelesaian sebuah persoalan di bawah. Baca Juga Rumus Gerak Parabola dan Keterangannya Cara menghitung titik berat benda disesuaikan dengan bentuk benda tersebut. Pada proses perhitungan, sobat idschool perlu mengenali bentuk benda dan bagaimana cara menghitung luasnya. Selain dari perhitungan tersebut, proses perhitungan lainnya berupa operasi hitung bilangan penujumlahan, pengurangan, perkalian, dan pembagian. Untuk lebih jelasnya perhatikan contoh cara mencari titik berat benda seperti bentuk berikut. Soal Carilah titik berat benda berikut! Langkah pertama, untuk mendapatkan titik berat pada bangun di atas, sobat idschool perlu membagi bangun ke dalam beberapa bagian. Dalam kasus ini, bangun tersebut akan dibagi menjadi dua bagian, seperti yang terlihat pada gambar di bawah. Diperoleh dua daerah yaitu daerah pertama A1 dengan warna hijau dan daerah ke dua A2 dengan warna kuning. Kedua daerah tersebut membentuk bangun persegi panjang. Dari dua bagian daerah tersebut, selanjutnya dapat dihitung luas kedua daerahnya. Luas daerah pertama sama dengan satuan luas. Dan luas daerah kedua sama dengan 800 satuan luas. Langkah berikutnya adalah menentukan koordinat titik berat dari kedua bangun. Caranya adalah dengan membuat diagonal dari keduanya dan mendapatkan titik koordinatnya. Seperti yang terlihat pada gambar di bawah! Diperoleh dua titik tengan untuk kedua bangun adalah titik P10, 40 untuk bangun pertama dan titik Q40, 10 untuk bangun ke dua. Setelah mendapatkan luas masing β masing bangun dan titik berat untuk masing β masing bangun. Selanjutnya sobat idschool dapat menentukan titik berat benda yang diberikan menggunakan rumus titik berat benda yang sudah diberikan di atas. Karena bangun yang diberikan hanya dibagi sampai dua bagian, maka sobat idschool hanya perlu menggunakan rumus berat benda sampai dua titik. Selanjutnya, perhatikan langkah pada cara mencari titik berat bendang berupa bangun luasan seperti pada cara berikut. Mencari x0 absis titik berat xo = A1 x1 + A2 x2 A1 + A2 xo = 10 + 800 40 + 800 xo = + xo = = 20 Mencari y0 ordinat titik berat yo = A1 y1 + A2 y2 A1 + A2 yo = 40 + 800 10 + 800 yo = + Jadi, diperoleh titik berat benda seperti pada soal adalah 20, 30 seperti yang ditunjukkan pada gambar di bawah. Baca Juga Cara Mencari Titik Berat Benda Berupa Garis Lurus Contoh Soal Titik Berat Benda dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan cara mencari titik beran benda/bangun luasan. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 β Soal dan Cara Mencari Titik Berat Benda Perhatikan gambar di bawah! Koordinat titik berat gambar di atas adalah β¦.A. 5; 4,2B. 5; 5,0C. 5; 5,1D. 5; 6,0E. 5; 6,1 PembahasanLangkah pertama untuk menyelesaikan soal tersebut adalah membagi bangun menjadi beberapa bagian, dalam kasus ini, akan dibagi menjadi dua bagian yaitu bagian persegi panjang dan segitiga. Luas daerah dari kedua bangun tersebut dapat dihitung seperti pada cara penyelesaian berikut. Diperoleh luas bangun pertama bangun segitiga adalah 30 satuan luas, sedangkan luas bangun kedua persegi panjang adalah 24 satuan luas. Selanjutnya atau langkah kedua adalah mencari titik berat koordinat untuk masing-masing bangun seperti yang ditunjukkan pada cara berikut. Terlihat bahwa bangun simetri pada titik x = 5, sehingga kondisi ini cukup menguntungkan. Memuat absis titik berat benda adalah x = 5. Sehingga, sobat idschool hanya perlu mencari ordinat titik berat. Diperoleh koordinat titik berat pada masing β masing bangun adalah P5, 6 dan Q5, 2. Selanjutnya adalah mencari koordinat titik berat untuk bangun yang diberikan seperti pada soal. Mencari absis titik berat xo = 5Mencari ordinat titik berat yo yo = 30 6 + 24 2 30 + 24 yo = 180 + 48 54 = 228 54 = 4,2 Jadi, koordinat titik berat benda adalah 5; 4,2.Jawaban A Contoh 2 β Soal dan Cara Mencari Titik Berat Benda Koordinat titik berat bangun luasan seperti gambar di atas terhadap titik O adalah β¦.A. 6; 4,70B. 6; 5,65C. 6; 6,5D. 6, 6,71E. 6; 7,5 PembahasanDari gambar bangun luasan pada soal dapat diperoleh letak absis dari titik berat bangun xo dapat dihitung dari setangah panjang horizontal sumbu x dari bangun, yaitu xo = Β½ Γ 12 = 6. Sedangkan absis untuk titik berat bangun luasan dapat dihitung seperti cara berikut. Jadi, Koordinat titik berat bangun luasan seperti gambar di atas terhadap titik O adalah 6; 6,71. Jawaban D Contoh 3 β Soal dan Cara Mencari Titik Berat Benda Koordinat titik berat bangun luasan gambar di atas terhadap titik O adalah β¦.A. 6; 71/5B. 6; 72/5C. 6; 81/5D. 6; 82/5E. 6; 91/5 PembahasanBenda homogen pada soal mempunyai letak absis untuk titik berat bangun pada xo = Β½ Γ 12 = 6, sedangkan letak ordinat yo dapat dihitung dengan rumus titik berat. Sebelumnya perhatikan bahwa bangun berbentuk persegi panjang dengan lubang berbentuk sebuah segitiga di tengah bangun. Bangun 1 persegi panjangLuas bangun A1 = 18 Γ 12 = 216Ordinat titik berat y1 = Β½ Γ 18 = 9 Bangun 2 lubang segitigaLuas bangun A2 = Β½ Γ 12 Γ 6 = 36Ordinat titik berat y2 = 6 + β
Γ 6 = 6 + 2 = 8 Cara menghitung koordinat titik berat bangun luasan seperti gambar yang diberikan pada soal dapat dihitung seperti pada cara berikut. Menghitung ordinat titik berat bangunyo = A1 Y1 β A2 Y2/216 β 36yo = 216 9 β 36 8/216 β 36yo = 1944 β 288/180yo = 1656/180 = 936/180 = 91/5 Jadi, Koordinat titik berat bangun luasan gambar di atas terhadap titik O adalah 6; 91/ E Contoh 4 β Soal dan Cara Mencari Titik Berat Benda Perhatikan gambar benda homogen berikut! Koordinat titik berat benda homogen tersebut adalah β¦.A. 3; 5B. 3; 5,6C. 3; 5,8D. 5,6; 3E. 5,8; 3 PembahasanTitik berat benda homogen seperti yang diberikan pada soal dapat diperoleh dengan membagi bangun menjadi tiga bagian berupa dua bangun persegi panjang dan sebuah persegi. Dari ketiga titik berat bangun dari setiap bagian, selanjutnya dapat diperoleh koordinat titik berat benda homogen. Cara mencari titik berat benda homogen seperti pada soal dapat diselesaikan seperti pada pengerjaan berikut. Jadi, koordinat titik berat benda homogen tersebut adalah 3; A Contoh 5 β Soal dan Cara Mencari Titik Berat Benda Perhatikan bangun karton homogen berikut ini! Letak koordinat titik berat bangun dari titik A adalah β¦.A. 2 cm; 2 cmB. 21/3 cm; 2 cmC. 22/3 cm; 2 cmD. 31/3 cm; 2 cmE. 22/3 cm; 2 cm PembahasanCara menentukan letak koordinat titik berat bangun dari titik A dapat diketahui seperti pada cara penyelesaian di bawah. Jadi, Letak koordinat titik berat bangun dari titik A adalah 21/3 cm; 2 B Demikianlah ulasan materi cara mencari titik berat benda 2 dimensi luasan yang dilengkapi dengan contoh soal titik berat benda homogen beserta pembahasannya. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Kumpulan Rumus Gerak Melingkar Beraturan GMB
Rumus Titik Berat dan Contoh Soal β Dalam kehidupan sehari-hari, banyak sekali benda-benda yang dapat ditemui dan memiliki titik berat. Titik berat ini dapat terdiri atas partikel-partikel yang memiliki berat dengan jumlah keseluruhannya yang membentuk gaya. Jumlah keseluruhan gaya berat partikel-partikel ini kerap disebut dengan gaya berat benda. Adapun titik tangkap gaya berat disebut dengan titik berat. Titik berat benda adalah titik tangkap gaya berat benda yang merupakan resultan dari seluruh gaya berat yang bekerja pada setiap bagian atau partikel yang menyusun sebuah benda. Baca juga Rumus Titik Berat Segitiga Dan Contoh Soal Baca juga Cara Menghitung Berat Badan Ideal Yang Benar Sederhananya, titik berat dapat diartikan sebagai titik yang menjadi penyeimbang dari suatu bangun. Titik berat benda akan membuat benda menjadi seimbang. Dalam mencari titik berat sendiri akan melibatkan beberapa hal yang dipengaruhi bentuk bendanya sendiri. Pada pembahasan kali ini, kalian akan mempelajari mengenai titik berat berdasarkan rumus-rumusnya. Berikut penjelasannya. Titik berat sebuah benda akan menangkap gaya berat benda. Hal ini yang dapat membuat benda dapat bekerja dengan baik. Titik berat sebuah benda sendiri dapat memiliki berbagai macam rumus. Berikut rumus-rumusnya. Benda berbentuk tidak teratur Sebuah benda dapat berbentuk tidak beraturan dengan memiliki koordinat titik berat xo,yo. Koordinat ini terbentuk dari setiap benda yang berbentuk tidak beraturan pada bidang xy dengan rumus berikut. Pages 1 2 3
Blog Koma - Pada artikel ini kita akan membahas materi Menentukan Titik Berat Segitiga. Pada segitiga terdapat garis-garis istimewa seperti garis sumbu, garis tinggi, garis bagi, dan garis berat, dimana rumus-rumus panjangnya bisa teman-teman baca pada artikel "Panjang Garis-garis Istimewa pada Segitiga" serta pembuktiannya pada artikel "Panjang Garis Berat pada Segitiga dan Pembuktiannya". Garis berat segitiga ada tiga yang ditarik dari masing-masing ketiga titik sudut segitiga. Perpotongan ketiga garis berat tersebut pada sebuah titik disebut titik berat segitiga. Bagaimana cara Menentukan Titik Berat Segitiga tersebut? Untuk Menentukan Titik Berat Segitiga, salah satunya menggunakan penerapan materi vektor yaitu "perbandingan vektor pada ruas garis". Hal-hal yang harus kita kuasai untuk mempermudah mempelajari materi Menentukan Titik Berat Segitiga ini yaitu "pengertian vektor", "panjang vektor", "vektor posisi", "kesamaan dua vektor, sejajar, dan segaris kelipatan", "penjumlahan dan pengurangan vektor", dan "perkalian vektor dengan skalar". Peengertian garis berat dan titik berat $ \spadesuit \, $ Pengertian garis berat segitiga Garis berat sebuah segitiga adalah garis yang melalui sebuah titik sudut dan membagi sisi didepan sudut menjadi dua bagian sama panjang. Pada gambar di atas, yang termasuk garis berat adalah garis AE, garis BD, dan garis CF. $ \spadesuit \, $ Pengertian titik berat segitiga Titik berat segitiga adalah titik perpotongan antara ketiga garis berat segitiga. Pada gambar di atas, titik P adalah titik berat segitiga ABC. Perbandingan ruas garis pada titik berat segitiga Perhatikan ilustrasi gambar di atas, masing-masing garis berat terhadap titik berat titik P memiliki perbandingan $ 2 1 $ yaitu $ AP PE = 2 1 $ , $ BP PD = 2 1 $, dan $ CP PF = 2 1 $. Rumus menentukan titik berat segitiga $ \clubsuit \, $ Vektor di R$^2$ Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ Ax_1,y_1 $ , $ Bx_2,y_2 $ , dan $ Cx_3,y_3 $. Titik berat segitiga ABC dapat kita tentukan dengan rumus Titik berat $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right $ $ \clubsuit \, $ Vektor di R$^3$ Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ Ax_1,y_1,z_1 $ , $ Bx_2,y_2,z_2 $ , dan $ Cx_3,y_3,z_3 $. Titik berat segitiga ABC dapat kita tentukan dengan rumus Titik berat $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right $ Catatan Untuk pembuktian teori di atas, silahkan teman-teman lihat di bagian bawah setelah contoh-contoh soalnya. Contoh soal Menentukan Titik Berat Segitiga 1. Tentukan koordinat titik berat segitiga ABC dengan koordinat masing-masing titik sudut $ A-1,2 $ , $ B3, -2 $ , dan $ C1,6 $ ! Penyelesaian *. Titik berat $ \Delta$ABC yaitu $ \begin{align} \text{Titik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{-1 + 3 + 1}{3} , \frac{2 + -2 + 6}{3} \right \\ & = \left \frac{3}{3} , \frac{6}{3} \right \\ & = \left 1 , 2 \right \end{align} $ Jadi, titik berat segitiga ABC adalah $ 1,2 . \, \heartsuit $. 2. Diketahui $ \Delta$PQR dengan koordinat titik sudut $ P1, -2,3 $ , $ Q5, 1, -1 $ , dan $ R-3, -5, 4 $. Tentukan koordinat titik berat segitiga PQR tersebut! Penyelesaian $ \begin{align} \text{Titik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right \\ & = \left \frac{1 + 5 + -3}{3} , \frac{-2 + 1 + -5}{3} , \frac{3 + -1 + 4}{3} \right \\ & = \left \frac{3}{3} , \frac{-6}{3} , \frac{6}{3} \right \\ & = \left 1 , -2 , 2 \right \end{align} $ Jadi, titik berat segitiga PQR adalah $ 1 , -2 , 2 . \, \heartsuit $. 3. Segitiga KLM memiliki titik sudut $ Kp,1,2 $, $ L1, q, -1 $ , dan $ M3, 0 , r $. Jika titik berat segitiga KLM adalah $ 1,1,-1 $ , maka tentukan koordinat titik sudut K, L, dan M serta tentukan nilai $ p + 2q + r^{2017} $! Penyelesaian *. Menentukan nilai $ p , q, r $ dari titik beratnya $ \begin{align} \text{Titik berat } & = 1,1,-1 \\ \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right & = 1,1,-1 \\ \left \frac{p+1+3}{3} , \frac{1+q+0}{3} , \frac{2+ -1 + r}{3} \right & = 1,1,-1 \\ \left \frac{p+4}{3} , \frac{1+q}{3} , \frac{1 + r}{3} \right & = 1,1,-1 \end{align} $ *. Dari kesamaan dua buah vektor, kita peroleh $ \frac{p+4}{3} = 1 \rightarrow p + 4 = 3 \rightarrow p = -1 $ $ \frac{1+q}{3} = 1 \rightarrow 1 + q = 3 \rightarrow q = 2 $ $ \frac{1 + r}{3} = -1 \rightarrow 1 + r = -3 \rightarrow r = -4 $ Sehingga koordinat masing-masing titik sudut segitiga KLM yaitu $ Kp,1,2 = -1,1,2 $ , $ L1, q, -1 = 1, 2, -1 $, dan $ M3, 0 , r = 3, 0 , -4 $. *. Menentukan nilai $ p + 2q + r^{2017} $ $ p + 2q + r^{2017} = -1 + + -4^{2017} = -1^{2017} = -1 $. Jadi, nilai $ p + 2q + r^{2017} = -1 . \, \heartsuit $ 4. Diketahui persegipanajng ABCD dengan $ A0,0 $ , $ B3,0 $ , $ C3,6 $ , dan $ D0,6 $. Jika titik P adalah titik berat segitiga ABC dan titik Q adalah titik berat segitiga ACD, maka tentukan a. Panjang PQ, b. Apakah titik P dan Q terletak pada bidang diagonal BD? Penyelesaian *. Ilustrasi gambar. a. Panjang PQ, -. Menentukan titik berat segitiga ABC $ \begin{align} \text{Titik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{0 + 3 + 3}{3} , \frac{0 + 0 + 6}{3} \right \\ & = \left \frac{6}{3} , \frac{6}{3} \right \\ & = \left 2 , 2 \right \end{align} $ sehingga titik P2,2 -. Menentukan titik berat segitiga ACD $ \begin{align} \text{Titik berat } & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \\ & = \left \frac{0 + 3 + 0}{3} , \frac{0 + 6 + 6}{3} \right \\ & = \left \frac{3}{3} , \frac{12}{3} \right \\ & = \left 1 , 4 \right \end{align} $ sehingga titik Q1,4 -. Menentukan panjang PQ dimana P2,2 dan Q1,4 $ PQ = \sqrt{1-2^2 + 4-2^2} = \sqrt{1 + 4} = \sqrt{5} $. Jadi, panjang PQ adalah $ \sqrt{5} \, $ satuan panjang. b. Apakah titik P dan Q terletak pada bidang diagonal BD? *. Untuk mengetahui terletak atau tidaknya titik pada sebuah garis, cuku kita cek apakah titik-titik tersebut segaris kolinear atau tidak. Titik K, L , dan M segaris jika $ \vec{KL} = k \vec{LM} $ salah satu vektor adalah kelipatan dari vektor yang lainnya. -. Apakah titik $ B3,0 $ , $ P2,2 $ dan $ D0,6 $ segaris? mari kita cek $ \begin{align} \vec{BP} & = k \vec{PD} \\ \vec{p} - \vec{b} & = k \vec{d} - \vec{p} \\ 2,2 - 3,0 & = k 0,6 - 2,2 \\ -1, 2 & = k -2 , 4 \\ -1, 2 & = -2k , 4k \end{align} $ Kita peroleh $ -2k = -1 \rightarrow k = \frac{1}{2} $ $ 4k = 2 \rightarrow k = \frac{1}{2} $ Karena terdapat nilai $ k $ yang sama maka berlaku $ \vec{BP} = k \vec{PD} \rightarrow \vec{BP} = \frac{1}{2} \vec{PD} $ , sehingga titik P segaris dengan titik B dan D, artinya titik berat P terletak pada bidang diagonal BD. -. Apakah titik $ B3,0 $ , $ Q1,4 $ dan $ D0,6 $ segaris? mari kita cek $ \begin{align} \vec{BQ} & = n \vec{QD} \\ \vec{q} - \vec{b} & = n \vec{d} - \vec{q} \\ 1,4 - 3,0 & = n 0,6 - 1,4 \\ -2, 4 & = n -1 , 2 \\ -2, 4 & = -n , 2n \end{align} $ Kita peroleh $ -n = -2 \rightarrow n = 2 $ $ 2n = 4 \rightarrow n = 2 $ Karena terdapat nilai $ n $ yang sama maka berlaku $ \vec{BQ} = n \vec{QD} \rightarrow \vec{BQ} = 2 \vec{QD} $ , sehingga titik Q segaris dengan titik B dan D, artinya titik berat Q terletak pada bidang diagonal BD. Jadi, kesimpulannya titik berat P dan Q terletak pada bidang diagonal BD. $ \spadesuit \, $ Pembuktian Perbandingan ruas garis pada titik berat segitiga *. Perhatikan ilustrasi gambar berikut. *. Untuk menentukan perbandingan garis yang diminta, kita akan kerjakan dengan menggunakan konsep perbandingan vektor. *. Dengan konsep titik-titik segaris kolinear , kita peroleh Misalkan $ \vec{AB} = \vec{q} $ dan $ \vec{AC} = \vec{p} $. $ \vec{AF} = \frac{1}{2}\vec{AB} = \frac{1}{3}\vec{q} $ dan $ \vec{AD} = \frac{1}{2}\vec{AC} = \frac{1}{2}\vec{p} $. -. Vektor $\vec{FP} $ segaris dengan $ \vec{FC} $ sehingga berlaku kelipatan $ \vec{FP} = n\vec{FC} \rightarrow \frac{\vec{FP}}{\vec{FC}} = \frac{n}{1} $ sehingga $ \frac{\vec{FP}}{\vec{PC}} = \frac{n}{1-n} $ -. Vektor $\vec{DP} $ segaris dengan $ \vec{DB} $ sehingga berlaku kelipatan $ \vec{DP} = m\vec{DB} \rightarrow \frac{\vec{DP}}{\vec{DB}} = \frac{m}{1} $ sehingga $ \frac{\vec{DP}}{\vec{PB}} = \frac{m}{1-m} $ -. Vektor $\vec{AP} $ segaris dengan $ \vec{AE} $ sehingga berlaku kelipatan $ \vec{AP} = x\vec{AE} \rightarrow \frac{\vec{AP}}{\vec{AE}} = \frac{x}{1} $ sehingga $ \frac{\vec{AP}}{\vec{PE}} = \frac{x}{1-x} $ *. Menentukan vektor $ \vec{AP} $ dari $ \vec{FP}\vec{PC} = n 1-n $ $ \vec{AP} = \frac{n\vec{AC} + 1-n\vec{AF}}{n + 1-n} = \frac{n\vec{p} + 1-n.\frac{1}{2}\vec{q}}{1} = n\vec{p} + \frac{1-n}{2}\vec{q} $. *. Menentukan vektor $ \vec{AP} $ dari $ \vec{DP}\vec{PB} = m 1-m $ $ \vec{AP} = \frac{m\vec{AB} + 1-m\vec{AD}}{m + 1-m} = \frac{m\vec{q} + 1-m.\frac{1}{2}\vec{p}}{1} = m\vec{q} + \frac{1-m}{2}\vec{p} $. *. Menentukan vektor $ \vec{AP} $ dari $ \vec{BE}\vec{EC} = 1 1 $ $ \vec{AP} = x \vec{AE} = x \frac{\vec{AB} + \vec{AC}}{1 + 1} = x\frac{\vec{q} + \vec{p}}{2} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} $. *. Ketiga bentuk vektor $ \vec{AP} $ di atas sama yaitu $ \vec{AP} = n\vec{p} + \frac{1-n}{2}\vec{q} \, $ .... i $ \vec{AP} = m\vec{q} + \frac{1-m}{2}\vec{p} \, $ .... ii $ \vec{AP} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} \, $ .... iii *. Menentukan nilai $ n , m , x $ dengan menyamakan koefisien vektor sejenis -. Bentuk i dan iii Koefisien $ \vec{p} \rightarrow n = \frac{x}{2} $ Koefisien $ \vec{q} \rightarrow \frac{1-n}{2} = \frac{x}{2} $ Artinya $ n = \frac{1-n}{2} \rightarrow 2n = 1- n \rightarrow 3n = 1 \rightarrow n = \frac{1}{3} $. Nilai $ \frac{x}{2} = n \rightarrow \frac{x}{2} = \frac{1}{3} \rightarrow x = \frac{2}{3} $. -. Persii dan iii dan gunakan $ x = \frac{2}{3} $ Koefisien $ \vec{q} \rightarrow m = \frac{x}{2} \rightarrow m = \frac{\frac{2}{3} }{2} = \frac{1}{3} $ Sehingga kita peroleh nilai $ n = \frac{1}{3}, m = \frac{1}{3} $ , dan $ x = \frac{2}{3} $ *. Menentukan perbandingan yang diminta $ \vec{AP}\vec{PE} = x 1-x = \frac{2}{3} 1 - \frac{2}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ $ \vec{BP}\vec{PD} = 1 - m m = 1 - \frac{1}{3} \frac{1}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ $ \vec{CP}\vec{PF} = 1 - n n = 1 - \frac{1}{3} \frac{1}{3} = \frac{2}{3} \frac{1}{3} = 2 1 $ Jadi, kita peroleh perbandingan $ AP PE = 2 1 $ , $ BP PD = 2 1 $, dan $ CP PF = 2 1 $. $ \clubsuit \, $ Pembuktian Rumus menentukan titik berat segitiga Misalkan titik A, B, C, P, dan E memiliki vektor posisi masing-masing $ \vec{a} $, $ \vec{b} $ , $ \vec{c} $ , $ \vec{p} $ , dan $ \vec{e} $ . Paerhatikan gambar berikut -. Perhatikan perbandingan $ \vec{BE}\vec{EC} = 1 1 $ , sehingga $ \vec{e} = \frac{\vec{b} + \vec{c}}{2} $. -. $\vec{AP} $ dan $ \vec{AE} $ segaris, sehingga $ \begin{align} \vec{AP} & = \frac{2}{3}\vec{AE} \\ \vec{p} - \vec{a} & = \frac{2}{3} \vec{e} - \vec{a} \\ \vec{p} & = \frac{2}{3} \vec{e} - \frac{2}{3}\vec{a} + \vec{a} \\ & = \frac{2}{3} . \frac{\vec{b} + \vec{c}}{2} + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} \vec{b} + \vec{c} + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \end{align} $ Sehingga vektor posisi titik beratnya $ \vec{p} = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} $. -. Vektor di R$^2$ Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ Ax_1,y_1 $ , $ Bx_2,y_2 $ , dan $ Cx_3,y_3 $. RUmus titik berat segitiganya $ \begin{align} \vec{p} & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \\ & = \frac{1}{3} x_1,y_1 + x_2,y_2 + x_3,y_3 \\ & = \frac{1}{3} x_1+ x_2 + x_3,y_1+y_2+y_3 \\ & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right \end{align} $ Jadi, terbukti bahwa rumus titik berat adalah Titik berat $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right $ -. Vektor di R$^3$ Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ Ax_1,y_1,z_1 $ , $ Bx_2,y_2,z_2 $ , dan $ Cx_3,y_3,z_3 $. RUmus titik berat segitiganya $ \begin{align} \vec{p} & = \frac{1}{3} \vec{a} + \vec{b} + \vec{c} \\ & = \frac{1}{3} x_1,y_1,z_1 + x_2,y_2,z_2 + x_3,y_3,z_3 \\ & = \frac{1}{3} x_1+ x_2 + x_3,y_1+y_2+y_3, z_1 + z_2 + z_3 \\ & = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right \end{align} $ Jadi, terbukti bahwa rumus titik berat adalah Titik berat $ = \left \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right $ Demikian pembahasan materi Menentukan Titik Berat Segitiga dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan aplikasi vektor yaitu "pembuktian dalil Menelaus dan Ceva dengan Vektor".
Postingan ini membahas contoh soal letak titik berat bidang homogen seperti bidang gabungan persegi panjang, persegi dan segitiga yang disertai pembahasannya atau penyelesaiannya. Setiap benda terdiri atas titik-titik materi atau partikel yang masing-masing memiliki berat. Resultan dari seluruh berat partikel disebut gaya berat benda. Sedangkan titik tangkap gaya berat disebut dengan titik berat benda-benda homogen yang memiliki bentuk teratur, sehingga memiliki garis atau bidang simetris, maka titik berat benda terletak pada garis atau bidang simetris tersebut. Rumus titik berat untuk bidang homogen berbentuk bidang dua dimensi sebagai berikut.β x = x1 . A1 + x2 . A2 + β¦+ xn . AnA1 + A2 + β¦+ An β y = y1 . A1 + y2 . A2 + β¦ + yn . AnA1 + A2 + β¦An Rumus titik berat untuk bidang homogen berbentuk ruang bidang tiga dimensi sebagai berikut.β x = x1 . V1 + x2 . V2 + β¦+ xn . VnV1 + V2 + β¦+ Vn β y = y1 . V1 + y2 . V2 + β¦ + yn . VnV1 + V2 + β¦Vn Rumus titik berat untuk bidang satu dimensi sebagai berikut.β x = x1 . L1 + x2 . L2 + β¦+ xn . LnL1 + L2 + β¦+ Ln β y = y1 . L1 + y2 . L2 + β¦ + yn . LnL1 + L2 + β¦Ln Keteranganx = letak titik berat dari sumbu xy = letak tiitk berat dari sumbu yx1, x2, xn = letak titik berat dari sumbu x bidang ke-1, ke-2, ke-ny1, y2, yn = letak titik berat dari sumbu y bidang ke-1, ke-2, ke-nA = luas bidangV = Volume bidangL = panjang bidangLangkah-langkah menentukan titik berat bidang homogen gabungan sebagai berikutBagi bidang gabungan menjadi beberapa titik berat masing-masing luas/volume/panjang masing-masing rumus titik berat bidang gabungan disumbu X dan Y dengan rumus soal 1Letak titik berat dari bangun bidang pada gambar dibawah dari sumbu X adalahβ¦Contoh soal letak titik berat bidang gabungan persegi panjang dan segitigaB. 4 cmC. 3,3 cmD. 3 cmE. 2 cmPembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang dan segitiga seperti gambar dibawah berat bidang gabungan persegi panjang dan segitigaLuas persegi panjang A1 = 6 . 3 = 18 titik berat x1 = 3 ; y1 = 1,5 dan dan luas segitiga A2 = 1/2 . 3 . 3 = 4,5 titik berat x2 = 4,5 ; y2 = 4. Kemudian tentukan titik berat dari sumbu x dengan rumus dibawah ini.β x = x1 . A1 + x2 . A2A1 + A2 β x = 3 . 18 + 4,5 . 4,518 + 4,5 β x = 54 + 20,2518 + 4,5 β x = 74,2522,5 = 3, soal ini jawabannya soal 2Suatu sistem bidang homogen ditunjukkan seperti soal letak titik berat bidang huruf TKoordinat titik berat sistem benda adalahβ¦A. 4 ; 3 mB. 4 ; 4,6 mD. 4 ; 5 mE. 4 ; 5,4 mPembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang bawah dan persegi panjang atas seperti gambar dibawah berat bidang huruf TLuas persegi panjang bawah A1 = 4 . 6 = 24 titik berat x1 = 4 , y1 = 3 dan luas persegi panjang atas A2 = 8 . 2 = 16 titik berat x2 = 4 , y2 = 7. Selanjutnya menentukan titik berat dari sumbu x dengan rumus dibawah ini.β x = x1 . A1 + x2 . A2A1 + A2 β x = 4 . 24 + 4 . 1624 + 16 β x = 96 + 6440 β x = 16040 = menentukan titik berat dari sumbu Y dengan cara dibawah ini.β y = y1 . A1 + y2 . A2A1 + A2 β y = 3 . 24 + 7 . 1624 + 16 β y = 72 + 11240 β y = 18440 = 4, titik berat 4 ; 4,6. Soal ini jawabannya soal 3Perhatikan gambar bidang homogen dibawah gabungan persegi panjang & segitigaKoordinat titik berat benda bidang simetris terhadap titik O adalahβ¦.A. 2 ; 4B. 2 ; 3,6C. 2 ; 3,2D. 2 ; 3E. 2 ; 2,8Pembahasan / penyelesaian soalKita bagi menjadi 2 bidang seperti gambar dibawah berat bidang gabungan persegipanjang & segitigaLuas persegi panjang A1 = 4 . 6 = 24 titik berat x1 = 2 ; y1 = 3 dan dan luas segitiga A2 = 1/2 . 2 . 6 = 6 titik berat x2 = 2 ; y2 = 8. Selanjutnya kita hitung letak titik berat dari sumbu X yaituβ x = x1 . A1 + x2 . A2A1 + A2 β x = 2 . 24 + 2 . 624 + 6 β x = 48 + 1230 β x = 6030 = kita hitung titik berat disumbu Yβ y = y1 . A1 + y2 . A2A1 + A2 β y = 3 . 24 + 8 . 624 + 6 β y = 72 + 4830 β y = 12030 = titik berat bidang gabungan nomor 4 adalah 2 , 4 atau jawabannya soal 4Letak titik berat bidang homogen dibawah ini terhadap titik O adalah β¦Bidang homogen huruf LA. 2 ; 2B. 2 ; 3C. 2 ; 4D. 3 ; 2E. 3 ; 3Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang vertikal dan persegi panjang titik berat bidang huruf LKita tentukan letak titik berat dari sumbu X dengan cara dibawah ini.β x = x1 . A1 + x2 . A2A1 + A2 β x = 0,5 . 1 . 10 + 3,5 . 5 . 21 . 10 + 5 . 2 β x = 5 + 3510 + 10 β x = 4020 = tentukan letak titik berat dari sumbu y sebagai berikutβ y = y1 . A1 + y2 . A2A1 + A2 β y = 5 . 1 . 10 + 1 . 5 . 21 . 10 + 5 . 2 β y = 50 + 1010 + 10 β y = 6020 = letak titik berat bidang huruf L diatas adalah 2 ; 3 atau jawaban soal 5Sebuah bidang homogen seperti pada soal letak titik berat nomor 6Letak titik ordinat bidang yang diarsir terhadap sisi B adalah..Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi panjang besar dan lubang segitiga. Luas persegi panjang besar A1 = 4 . 8 = 32 titik berat x1 = 2 ; y1 = 4 dan luas segitiga A1 = 1/2 . 4 . 3 = 6 titik berat x1 = 2 ; y1 = 6. Letak titik berat dari sumbu Y sebagai berikut.β y = y1 . A1 β y2 . A2A1 β A2 β y = 4 . 32 β 7 . 632 β 6 β y = 128 β 4226 β y = 8626 = 4313 = 3 413 Soal ini jawabannya soal 6Letak titik berat sistem benda seperti gambar dibawah ini adalahβ¦Contoh soal letak titik berat nomor 6A. ; 2B. 1 ; 1 3/5C. 2/5 ; 1 4/5D. 1 ; 1 4/5E. 2 ; 2Pembahasan / penyelesaian soalBidang diatas dibagi menjadi dua yaitu persegi besar dan lubang berbentuk persegi panjang kecil seperti gambar dibawah titik berat persegi panjangLuas persegi besar A1 = 4 . 4 = 16 titik berat x1 = 2 ; y1 = 2 dan luas lubang persegi panjang kecil A2 = 2 . 2 = 4 titik berat x2 = 1 ; y2 = 2. Selanjutnya menentukan titik berat dari sumbu x dengan cara dibawah ini.β x = x1 . A1 β x2 . A2A1 β A2 β x = 2 . 4 . 4 β 1 . 2 . 24 . 4 β 2 . 2 β x = 32 β 416 β 4 β x = 2812 = 73 = 2 13 .Kemudian menentukan titik berat dari sumbu y dengan rumus dibawah ini.β y = y1 . A1 β y2 . A2A1 β A2 β y = 2 . 4 . 4 β 2 . 2 . 24 . 4 β 2 . 2 β y = 32 β 816 β 4 β y = 2412 = letak titik berat persegi panjang nomor 1 adalah 2 ; 2 atau jawaban soal 7Letak koordinat titik berat benda homogen terhadap titik O pada gambar berikut adalah β¦Contoh soal letak titik berat nomor 7A. 4 ; 3B. 4 ; 3C. 4 ; 3D. 3 ; 4E. 3 ; 3Pembahasan / penyelesaian soalPembahasan soal letak titik berat nomor 7Letak titik berat koordinat x sebagai berikut.β x = x1 . A1 β x2 . A2A1 β A2 β x = 3 . 48 β 3 . 1248 β 12 β x = 144 β 3636 = 3Letak titik berat koordinat y sebagai berikut.β y = y1 . A1 β y2 . A2A1 β A2 β y = 4 . 48 β 5 . 1248 β 12 β y = 192 β 6036 = 13236 = 113 = 323 Soal ini jawabannya soal 8Titik berat dari bangun bidang dibawah ini adalah β¦Contoh soal titik berat nomor 8A. 3/2 ; 4/5 cmB. 3/2 ; 2 cmC. 5/2 ; 5/4 cmD. 2 ; 4/5 cmE. 2 ; 7/4 cmPembahasan soal / penyelesaian soalPembahasan soal letak titik berat nomor 8Letak titik berat koordinat x sebagai berikut.β x = x1 . A1 β x2 . A2A1 β A2 β x = 2 . 12 β 2 . 412 β 4 = 2Letak titik berat koordinat y sebagai berikut.β y = y1 . A1 β y2 . A2A1 β A2 β y = 1,5 . 12 β 1 . 412 β 4 = 74 Jawaban soal 9Koordinat titik berat bangun bidang dibawah ini adalah β¦Contoh soal titik berat nomor 9A. 1 ; 1B. 2 ; 1/2C. 2 ; 1D. 2 ; 1E. 2 ; 2Pembahasan / penyelesaian soalPembahasan soal letak titik berat nomor 9Titik berat koordinat x sebagai berikut.β x = x1 . A1 β x2 . A2 β x3 . A3A1 β A2 β A3 β x = 2 . 12 β 2 . 2 β 2 . 212 β 2 β 2 = 2Letak titik berat koordinat y sebagai berikut.β y = y1 . A1 β y2 . A2 β y3 . A3A1 β A2 β A3 β y = 1,5 . 12 β 0,5 . 2 β 2,5 . 212 β 2 β 2 = 112 Jawaban C.
cara menghitung koordinat titik berat